1990 American Regions Mathematics League

Power Question—Diophantine Equations

In the following equations, *all* letters represent positive integers, and a > b.

Let us examine the expression $a^3 + b^3$, where a > b. One well-known result is that $a^3 + b^3 = c^3$ has no solution in positive integers. For each of the equations in parts I and II, either:

- 1. Prove that no solutions can exist OR
- 2. Show how an infinite number of solutions can be generated.

I. A.
$$a^3 + b^3 = c^2$$

B.
$$a^3 + b^3 = c \cdot d \cdot e$$
.

where c, d, and e are in geometric progression

C.
$$a^3 + b^3 = c \cdot d \cdot e$$
,

where c, d, and e are in arithmetic progression

D.
$$a^3 + b^3 = 3p$$
, where p is a prime greater than 3

II. A.
$$a^3 + b^3 = 2^c$$

B.
$$a^3 + b^3 = 3^c$$

C.
$$a^3 + b^3 = p^c$$
, where p is a prime greater than 3

III. Assuming that $a^3 + b^3 = c!$ has solutions, and c is at least 12:

A. Prove that the largest prime less than *c* does not divide *a*.

B. Prove that a + b is a multiple of 330.